Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Brain Behav ; 18(3): e12528, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30324647

RESUMO

The atypical vesicular glutamate transporter VGLUT3 is present in subpopulations of GABAergic interneurons in the cortex and the hippocampus, in subgroups of serotoninergic neurons in raphe nuclei, and in cholinergic interneurons in the striatum. C56BL/6N mice that no longer express VGLUT3 (VGLUT3-/- ) display anxiety-associated phenotype, increased spontaneous and cocaine-induced locomotor activity and decreased haloperidol-induced catalepsy. Inbred mouse strains differ markedly in their sensitivity to anxiety and behavioral responses elicited by drugs. The purpose of this study was to investigate strain differences in VGLUT3 expression levels and its potential correlates with anxiety and reward-guided behaviors. Five inbred mouse lines were chosen according to their contrasted anxiety and drugs sensitivity: C57BL/6N, C3H/HeN, DBA/2J, 129/Sv, and BALB/c. VGLUT3 protein expression was measured in different brain areas involved in reward or mood regulation (such as the striatum, the hippocampus, and raphe nuclei) and genetic variations in Slc17a8, the gene encoding for VGLUT3, have been explored. These five inbred mouse strains express very different levels of VGLUT3, which cannot be attributed to the genetic variation of the Slc17a8 locus. Furthermore, mice behavior in the open field, elevated plus maze, spontaneous- and cocaine-induced locomotor was highly heterogeneous and only partially correlated to VGLUT3 levels. These data highlight the fact that one single gene polymorphism could not account for VGLUT3 expression variations, and that region specific VGLUT3 expression level variations might play a key role in the modulation of discrete behaviors.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/genética , Ansiedade/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Hipercinese/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Ansiedade/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cocaína/toxicidade , Hipercinese/induzido quimicamente , Locomoção , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
2.
Front Cell Neurosci ; 11: 140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559797

RESUMO

Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer's collaterals - CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...